一下。
这种众多顶级数学家之间的学术交流,真的很难遇到。
尤其是对于他这类想在学术上更进一步的人来说。
......
讲台上,徐川的报告依旧在继续。
“.....利用标准的能量计算我们可以得到v的一致?,与时间无关,而通过证明θhetaθ的一致有界?,可以得到以下方程:”
由此,可以证明θ﹣1L∞(0,∞;L p )范数是有界的,同时,利用此方程.......
随着徐川的讲述,‘微元构造法’逐渐被引入到了NS方程最后一步的证明中。
对于三维不可压缩 okes方程光滑解的整体存在?这一难题来说,它就是像是科幻小说中的太空电梯一样,从地球直达太空,整个过程干净利落无比,没有一丝多于地方。
而随着时间的流逝,收尾过程也正式从徐川口中吐出。
大礼堂中,安静的氛围中慢慢的充斥着期待、迷茫、紧张、恍然等各种情绪。
坐在威腾身边,罗杰·彭罗斯用手捅了捅身边的爱德华威腾,眼神中带着凝重和疑问询问道。
“你听懂了吗?”
老实说,整片报告会下来,他听懂的地方并不是很多,可能还不到一半?
毕竟他是一名理论物理学家,研究的引力坍塌、时空奇点、黑洞这些东西。
即便是在数学上一些成就,也仅限于几何与抽象结构等领域。
对于拓扑、偏微分方程等领域的知识,虽说研究物理的基本都懂一些,但也基本都只是懂一些而已。
要用它来研究高深前沿的数学领域基本不大可能。
所以听到一半,特别是当那个什么‘微元构造法’开始引入的时候,他就开始有些迷茫了。
而坐在他身边,听到询问后,爱德华·威腾头也没回的回道:“还行。”
他在数学上的能力不是彭罗斯能比的。他专长量子场论,弦理论和相关的拓扑和几何等多个数学领域。
尽管NS方程并不在他的研究范围内,但他这名学生所使用的方法有很多都是拓扑方面的东西。
闻言,罗杰·彭罗斯眉头挑了挑,感觉有些扎心,同是数学物理家,他居然听懂了?
想了想后,他开口问道:“那你后悔了吗?”
听到这话,正听着收尾报告的威腾嘴角不由自主的抽动了一下。
这人真烦!
......
PS:晚上还有一章,求月票! .
本章完!
如果浏览不正常,请退出浏览器阅读模式。
退出阅读模式,可以使用书架,足迹等功能。>> --