俯瞰着安静卧在宽阔地面上的破晓聚变装置。庞大的反应堆犹如钢铁巨兽一般沉睡着,只等待一个醒来的时机。
尽管已经不是第一次站在这种位置,但他的心此刻前所未有的澎湃着,跳动着。
谁也不知道,为了这一刻,他已经等待了至少十几年的时间。
走到了徐川的旁边,彭鸿禧院士的学生,此前负责过《核能β辐射能聚集转换电能机制》项目的韩锦作为彭鸿禧的助理同样加入了可控核聚变工程。
此刻,他负责着代替彭鸿禧院士向徐川传达着报告:“徐院士,破晓聚变装置的全面检查已经完成,所有设备均正常无问题,可以进行验收实验了。”
听到韩锦的报告,徐川点了点头,深呼吸了一口后,沉稳的下达了指令:“开始通电运行!”
随着开始实验的命令下达,各组控制室的工作人员迅速忙碌了起来。
外部电流稳定的供应入破晓聚变装置中,连接着液氮与液氦存储的管道阀门被打开,超低温的液氦与液氮通过不同的管道流向不同的区域。
部署在外场的高温铜碳银复合超导材料如以往无数次的实验中一样,在液氮与液氦的冷冻下迅速达到了Tc临界温度。
而随着强电流的不断输入,通过外场超导线圈的电流开始迅速且稳定的增大,伴随着强电流经过普通导体的‘滋滋’声,外部的超导线圈开始向超导态转变。
与此同时,总控制室中反馈在电脑屏幕上的约束磁场强度与破晓聚变装置的各项数值开始不断攀升。
看着一路上升到40T的约束磁场,徐川一直紧绷着的脸庞也带上了一丝笑意。
不管之前测试过多少次,不管上辈子使用过多少次,但当现在部署在破晓聚变设备上的高温铜碳银复合超导材料如期展示出自己强大的性能时,他一直提起的心,也终于放下来了。
40.21T!
束缚等离子体的磁场强度是控制可控核聚变反应堆腔室中超高温高压等离子体湍流的关键之一。
通过叠加一百特斯拉的磁场强度,这已经是地球磁场强度的八万倍了,是原本ASDEX装置的四倍多。
如此庞大的约束磁场,能更进一步更有效的控制住反应堆腔室中的等离子体。
“稳态磁场强度达到40.21特斯拉,第一阶段验收目标达成!”
&>> --