想在此分形框架下是成立的?”
写下标题和引言后,徐川跳过正文,敲下了几行空格。
引用文献:
一、kigamij,lapidusmleyl关于拉普拉斯算子谱分布的问题,pcf自相似集。数学与物理学报,1993,158:93-125
二、谱渐近,更新定理和贝里猜想对于一类分形。数学与工程学报,1996,72(3):188-214
引用的文献并不多,还不到一巴掌之数。
这只能说,几乎没多少人在这一块做出过多少说的上来的贡献。
事实上也正是如此,自从1979年,日不落国的物理学家mv贝里在研究光波在分形物体上的散射问题时将eyl猜想推广到了Ω为分形区域的情形后,几十年来,无数的数学家和数学爱好者,以及物理学家都在具分形边界连通区域上的谱渐近区域努力过。
而然三十年的时光过去,除去1993年,拉皮迪和波默兰斯两位数学家证明了一维的eyl-berry猜想是成立的外,就几乎没有任何新的成果了。
无数的数学家、数学爱好者和物理学家用了三十多年的努力,却没有一个人能成功将eyl-berry猜想变成eyl-berry定理。
但数学和物理的魅力就在这里,一个个的猜想就像是沉甸甸的果实一般挂在树上,无论是数学家还是物理学家,都能看到那诱人的嫣红和饱满的果形。
等待的,只是一个数学家或者物理学家去搭建一扇梯子爬上去摘取而已。
嗯,牛顿大爷例外,别人是架梯子爬上去摘,他是苹果自己掉下来砸脑袋上。
敲下标题和引言后,徐川将电脑放到了一遍,从书包中摸出了一叠a4稿纸,开始续写心中的思路。
南大的图书馆很大,有些区域还是挺安静的。
就像他现在所在的地方,因为存储的图书都是较为偏僻的书籍,周边并没有几个人,所以徐川也就懒的跑回宿舍了。
设Ω?rn为有界开集,我们考虑如下的dirichlet-laplace算子的特征值问题:(p){-△u=λu,x∈Ω;u|?Ω=
&n>> --