理很简单。
即,在选定的一类函数中寻找某个函数g,使它是已知函数在一定意义下的近似表示,并求出用g近似表示而产生的误差。”
这是高中数学的函数基础之一。
对于徐川来说,研究这些东西一开始只是为了解决海思和华芯的问题,不过随着时间的推移,他越来越对这种神经性网络感兴趣了。
这种从数学机理出发,利用模型来完备进行不同层次的描述和模拟的结构,除了芯片外,在其他领域也有不少的应用。
比如人工智能、自动控制、机器人、统计学等等。
这些都是徐川相当感兴趣的领域。
人工智能就不用多说了,这是未来发展的趋势。
而自动控制和机器人,则是社会生产力进步的核心关键点之一。
至于统计学,看似它是一门应用数学,主要为其他领域而工作的。
但实际上,它本身也是可以应用在数学领域的。
当然,他更看重的,是通过神经性网络来统计和分析高能物理领域亦或者材料学领域的数据。
后两者的数据量都相当大,需要更健全和简便的数学统计以及分析方式。
而且这些天研究下来,徐川敏锐的感觉到,这种神经性网络,相对比普通的硅基芯片构成计算机来说,它似乎更适合量子芯片与量子计算机。
如果说将传统的硅基芯片构成计算机看成是2d或者2.5d的,那么量子计算机则是3d的,天生在维度上超越了一个层次。
而神经性网络计算方式,其实从生物学的角度就能看出来,它天生就是3d的立体性架构。
当然,这种说法或许有些不准确。
但他的确觉得这有可能会更加适应量子计算机。
只不过现在并没有完备能够使用的量子计算机来给他验证这个想法而已。
要解决海思和华芯的问题不是短短几天就能做到的,在一边学习一边研究的同时,徐川也将部分精力投入到了其他工作方面。
日子就这样一天天的过去,眨眼间,元宵节就到了。
别墅中,唐思佳敲了敲书房的门。
&n>> --